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Elucidating the Neural Representation and the Processing
Dynamics of Face Ensembles
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Extensive behavioral work has documented the ability of the human visual system to extract summary representations from face
ensembles (e.g., the average identity of a crowd of faces). Yet, the nature of such representations, their underlying neural mechanisms,
and their temporal dynamics await elucidation. Here, we examine summary representations of facial identity in human adults (of both
sexes) with the aid of pattern analyses, as applied to EEG data, along with behavioral testing. Our findings confirm the ability of the visual
system to form such representations both explicitly and implicitly (i.e., with or without the use of specific instructions). We show that
summary representations, rather than individual ensemble constituents, can be decoded from neural signals elicited by ensemble
perception, we describe the properties of such representations by appeal to multidimensional face space constructs, and we visualize their
content through neural-based image reconstruction. Further, we show that the temporal profile of ensemble processing diverges system-
atically from that of single faces consistent with a slower, more gradual accumulation of perceptual information. Thus, our findings reveal
the representational basis of ensemble processing, its fine-grained visual content, and its neural dynamics.
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Introduction
Humans routinely encounter groups of faces in a variety of set-
tings. Whether it be in an office, on a subway, or walking down a
busy street, we are sometimes forced to process quickly a large
amount of facial information. Given the limits of working mem-
ory (Luck and Vogel, 1997), a mechanism has been suggested that
allows individuals to encode information, such as size (Chong
and Treisman, 2003, 2005), orientation (Dakin and Watt, 1997),
and direction of motion (Watamaniuk et al., 1989) from similar
objects into averages or “summary representations.” Interest-

ingly, such a mechanism also extends to the processing of more
complex properties, including, in the case of faces, emotional
expression (Haberman and Whitney, 2007, 2009), gaze (Sweeny
and Whitney, 2014; Florey et al., 2016), gender (Haberman and
Whitney, 2007), and even identity (de Fockert and Wolfenstein,
2009; Neumann et al., 2013, 2017; Leib et al., 2014; Haberman et
al., 2015).

Despite growing interest in the behavioral study of facial sum-
mary representations (Whitney and Yamanashi Leib, 2018), the
neural underpinnings of ensemble face encoding have received
far less attention. Recent fMRI work (Im et al., 2017) has sug-
gested that the perception of individual face emotions and that of
crowd emotions recruit differentially the two visual streams, with
the former relying more on the ventral stream and the latter
relying more on the dorsal stream. However, ventral areas, such
as the lateral occipital area and the parahippocampal place area,
have also been critically implicated in object ensemble processing
(Cant and Xu, 2012, 2017). Regarding the dynamics of ensemble
perception, EEG work (Puce et al., 2013) has shown that event-
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Significance Statement

Humans encounter groups of faces, or ensembles, in a variety of environments. Previous behavioral research has investigated how
humans process face ensembles as well as the types of summary representations that can be derived from them, such as average
emotion, gender, and identity. However, the neural mechanisms mediating these processes are unclear. Here, we demonstrate that
ensemble representations, with different facial identity summaries, can be decoded and even visualized from neural data through
multivariate analyses. These results provide, to our knowledge, the first detailed investigation into the status and the visual
content of neural ensemble representations of faces. Further, the current findings shed light on the temporal dynamics of face
ensembles and its relationship with single-face processing.
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related potential (ERP) components sensitive to individual face
processing can be modulated by the perception of multiple faces.
Specifically, the amplitude of the N170 component was found to
increase in response to viewing multiple faces compared with a
single face and, hence, that common neural markers can inform
both single and ensemble face processing.

Thus, single-face and ensemble face perception may exhibit
different neural profiles, yet the nature, scope, and significance of
such differences remain to be investigated. Of note in this respect,
it is unclear whether and how specific neural signals reflect the
visual content of summary representations associated with the
perception of face ensembles. To address these issues, we appeal
to pattern analyses and image reconstruction methodology as
applied to EEG data.

Recent studies of individual face perception have revealed the
complex temporal dynamics of facial identity processing (Ghu-
man et al., 2014; Vida et al., 2017; Nemrodov et al., 2019) as well
as the pictorial content of face representations (Nemrodov et al.,
2018). Specifically, such work has succeeded in decoding neural
signals associated with different facial identities, in characterizing
their temporal profile, and in reconstructing the visual appear-
ance of single faces as perceived by different participants from
corresponding EEG signals. Here, we rely on such methodology
to examine the dynamics and the informational content of en-
semble identity perception.

Specifically, we use EEG and behavioral data to address a series
of related questions regarding: (1) the effectiveness of forming
summary ensemble representations of facial identity explicitly
and implicitly (i.e., with or without specific instructions); (2) the
possibility of identifying and visualizing neural representations
of ensemble summaries; and (3) the characterization of the tem-
poral profile associated with ensemble perception. Briefly, our
investigation supports the development of summary representa-
tions both explicitly and implicitly while pointing to the benefit
and the distinctiveness of implicit processing. To our knowledge,
this is the first demonstration regarding the existence of neural
representations of face ensemble summaries as demonstrated by
their successful decoding and reconstruction from neural data.
Equally important, the present work sheds light on the dynamics
of ensemble processing and its relationship with single-face pro-
cessing. Thus, collectively, the present results speak to the nature,
fine-grained visual content, and emergence of summary repre-
sentations from visual ensembles.

Materials and Methods
Participants
Fourteen healthy adults (10 females; age range: 19 –25 years) were re-
cruited from the University of Toronto community to participate in this
study. All participants were right-handed, had normal or corrected-to-
normal vision, and reported no history of neurological or visual impair-
ment. Participants provided signed, informed consent and were
financially compensated for participating in this study. This study was
approved by the Research Ethics Board at the University of Toronto.

Stimuli
Stimulus selection and processing proceeded in three steps, as follows.
First, color images of Caucasian males were selected from the Radboud
database (Langner et al., 2010) to display young adult faces with neutral
expressions and frontal pose, gaze, and illumination. These images were
scaled uniformly and aligned with roughly the same position of the eyes
and the nose, cropped to show only internal features of the face, and
normalized with the same mean and root-mean-square contrast values
for each channel in CIEL*a*b*color space.

Next, in a second step, of 60 such images, 4 groups of 6 faces were
selected, so that two sets (i.e., 1–1 and 1–2) yielded a similar average face

and the other two (i.e., 2–1 and 2–2) yielded a distinct similar average
face. Specifically, we randomly sampled 4 groups of faces for a total of
1000 iterations under the constraint that the L2 image distance between
the pixelwise averages of 6 faces from matching sets (i.e., the average of
set 1–1 vs that of 1–2 and the average of set 2–1 vs that of 2–2) should be
minimized. This procedure was used to determine which subsets of faces,
of all images, yielded the most desirable result in terms of pixel-based,
average-face distances.

Third, the average of each set was subtracted from all images in that set
and replaced with the average of all 12 faces from two matching sets (e.g.,
the average of set 1–1 was subtracted from all individual faces in 1–1 and
the average of all faces in sets 1–1 and 1–2 was added to those individual
faces). Thus, our procedure aimed to deliver two sets of faces (i.e., 1–1
and 1–2) that shared the same pixelwise average face, whereas the other
two (i.e., 2–1 and 2–2) shared a different average. To be clear, we note
that Step 2 above already approximates a solution and, thus, limits the
subsequent impact of Step 3 on image processing; for instance, if the
average of selected set 1–1 were replaced by a widely dissimilar average of
sets 1–1 and 1–2, this would yield image artifacts and an unrealistic
appearance for the individual faces in set 1–1. In summary, the procedure
above delivered a total of 26 single-face stimuli consisting of 24 unique
facial identities, divided across 2 pairs of matching face sets, along with 2
corresponding average faces (see Fig. 1).

Next, for the purpose of constructing ensemble stimuli, the 6 faces
from each set were displayed in a circular arrangement leading to four
base face ensembles (see Fig. 1). Further, to create multiple versions of
each ensemble, each display was “rotated” by shifting individual faces
clockwise by one position six times. This procedure delivered a total of 24
ensemble stimuli.

In addition, for the purpose of the EEG experiment, 6 Caucasian fe-
male face images were also extracted from the same database. Single-face
stimuli were generated from these images in the manner described above
for male face stimuli. Further, one base ensemble, allowing 6 rotation-
based versions, was constructed from these images.

Experimental design and statistical analysis
Behavioral experiment. Participants performed a one-back identity task
first with single-face stimuli, for three consecutive blocks, and then with
ensemble stimuli, for the next four consecutive blocks.

During the first block, each trial had the following structure: a fixation
cross was displayed for 400 ms, followed by a single-face stimulus for 600
ms, then by a fixation cross for 600 ms, and by a second face stimulus for
600 ms. The second stimulus was replaced by a fixation cross which
stayed on screen until the participant made a response (i.e., by pressing
designated keys for “same”/“different” identities). Each single face sub-
tended an angle of 3° � 2° at a distance of 80 cm from the screen while the
head of the participant was stabilized with the aid of a chin rest. All
stimuli were presented at least twice (at most 3 times) within the block in
pseudorandom order, and trials with repeated versus different stimuli
occurred equally often. The first block consisted of 50 trials and took �5
min to complete. The second and third blocks were similar to the first,
except that face stimuli were presented for 300 ms and each block con-
sisted of 75 trials.

Next, participants performed an ensemble recognition task analogous
to the single-face task. Specifically, participants were presented with face
ensembles and were asked to determine whether two consecutive ensem-
bles had the same or different average identities. For the purpose of this
task, participants were asked to fixate a central cross at all times and to
avoid looking at specific faces in an ensemble. On any trial, an ensemble
from a given group could only be followed by an ensemble from a differ-
ent group (e.g., if the first face ensemble was 1–2, then the following
ensemble could be 1–1, 2–1, or 2–2, but not 1–2). Thus, no ensemble
stimulus could be repeated within a trial and no individual face image
was repeated across different ensembles in the same trial. Ensemble stim-
uli subtended an angle of �9° � 7° and same-average versus different-
average trials occurred equally often. During block 4 (i.e., the first
ensemble block), participants viewed each stimulus for 600 ms and com-
pleted 75 trials over the course of 5 min. During blocks 5–7, stimuli were
presented for only 300 ms and participants completed 75 trials per block.
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All stimuli were presented against a black background on a monitor
with a 1280 � 1080 resolution and a 60 Hz refresh rate. Participants
completed their behavioral testing within a single 45 min session.
MATLAB and Psychtoolbox 3.0 (Brainard, 1997; Pelli, 1997) (RRID:
SCR_002881) were used to present stimuli, record participant responses,
and analyze the data.

EEG experiment: behavioral methods. The experiment was divided
across two sessions performed on separate days no more than 3 d apart.
Each session, consisting of 2 training blocks and 16 experimental blocks,
lasted �3 h (including EEG equipment setup).

Each experimental block could involve either single-face presentations
(i.e., single-face blocks) or ensemble presentations (i.e., ensemble
blocks). In each session, the two types of blocks were interleaved in
groups of four as follows: four single-face blocks were followed by four
ensemble blocks, which were followed by four single-face blocks and
then four ensemble blocks. Single-face blocks contained 234 trials, in-
cluding 26 male identities repeated 8 times and presented in a pseudo-
random order, as well as 26 catch trials consisting of female faces.
Similarly, face ensemble blocks contained 216 total trials, including 24
male ensemble stimuli repeated 8 times and presented in pseudorandom
order, as well as 24 catch trials consisting of female face ensembles. For
both types of block each stimulus was displayed for 300 ms followed by a
fixation cross with a variable 600 –700 ms duration, and the task of the
participants was to respond to female faces by pressing a key as soon as
they were displayed. In all other respects, stimulus presentation followed
the procedure described above for the behavioral experiment.

Before EEG data collection, participants also completed one training
block of each type (i.e., one single-face block followed by a face-ensemble
block).

EEG experiment: data acquisition and preprocessing. EEG data were
recorded using an ActiveTwo EEG recording system (Biosemi). The elec-
trodes were arranged according to the International 10/20 System, and
the electrode offset was kept �40 mV. The EEG was low-pass filtered
using a fifth-order sync filter with a half-power cutoff at 204.8 Hz and
then digitalized at 512 Hz (i.e., 512 time bins per second, �1.95 ms per
time bin) with 24 bits of resolution. All data were digitally filtered
offline (zero-phase 24 dB/octave Butterworth filter) with a bandpass
of 0.1– 40 Hz.

Next, data were separated into epochs from 100 ms before stimulus
presentation until 900 ms after stimulus presentation. Epochs corre-
sponding to go trials (i.e., single female faces and female face ensembles),
false alarms, and misses were discarded from analysis. Further, noisy
electrodes were interpolated if necessary (no more than 3 per partici-
pant), and epochs were rereferenced to the average reference. In addi-
tion, before univariate ERP analyses, data were inspected for artifacts
and, using Infomax ICA (Delorme et al., 2007), ocular artifacts, such as
eye-blinks, were removed. After removing trials containing artifacts
and/or false alarms, we retained an average of 98% trials across partici-
pants (range: 96%–99%); we note the relatively small number of false
alarms as participants performed the go/no-go recognition tasks at ceil-
ing (range: 92%–99% accuracy).

All analyses were performed using Letswave 6 (Mouraux and Iannetti,
2008) and MATLAB.

Univariate ERP analyses. Twelve bilateral electrodes located over ho-
molog occipitotemporal (OT) areas (left: P5, P7, P9, PO3, PO7, and O1;
right: P6, P8, P10, PO4, PO8, and O2) were used in the ERP analysis. We
selected these electrodes because of the robustness of classical ERP com-
ponents (e.g., N170) recorded at their location and because of their abil-
ity to support pattern discrimination of facial identity (Nemrodov et al.,
2018). Data corresponding to each type of stimulus (i.e., single-face and
face ensemble) were averaged across electrodes separately for each par-
ticipant to create a grand average waveform. For univariate analyses, we
separately identified the P1, N170, P2, and N250 components and con-
ducted pairwise two-sample t tests to compare their amplitudes and their
latencies (i.e., onset times) between single faces and ensembles.

Pattern classification: single-face and ensemble decoding. Pattern analy-
ses were conducted separately for each participant. Specifically, decoding
estimates were computed for each participant and then averaged and

compared against each other and against chance (50%) via two-tailed
t tests.

Spatiotemporal patterns consisting of 3684 features (12 electrodes �
307 time bins during the interval 50 – 650 ms) were constructed through
concatenation separately for each epoch (Nemrodov et al., 2018). A rel-
atively wide 600 ms temporal interval was selected, in this respect, to
contain both early and higher-level visual information relevant to single-
face processing (Ghuman et al., 2014; Nemrodov et al., 2016, 2018; Vida
et al., 2017) as well as to capture the extended time course of ensemble
processing (Haberman et al., 2009). All epochs corresponding to the
same stimulus in a given block were then averaged to increase the signal-
to-noise ratio of the observations for classification purposes (Grootswa-
gers et al., 2017). Thus, for single-face stimuli, a maximum of eight
patterns and no less than six, after EEG preprocessing, were averaged to
deliver a single observation. Similarly, for ensembles, all stimuli within a
block corresponding to the same base ensemble, for a maximum of 48
patterns (i.e., 6 rotations � 8 repetitions) and no less than 45, were
averaged into a single observation.

Next, each spatiotemporal feature was separately z-scored and nor-
malized across observations within the interval 0 –1. Pairwise classifica-
tion of single faces and ensembles was then conducted across these
observations using linear support vector machines (c � 1) and leave-one-
block-out cross-validation. In total, 325 single-face pairs and 6 ensemble
stimulus pairs were evaluated.

Further, to assess the processing of summary identity across ensembles
containing different average identities, classification was performed with
different training and testing pairs (e.g., a classifier would be trained to
discriminate Ensembles 1–1 and 2–1, and then tested with Ensembles 1–2
and 2–2) for a total of 4 combinations; all possible training/testing pair
combinations were considered for each participant. In this case, training
was performed on all available observations for one pair of ensembles,
and testing was performed on all observations for the other pair. Criti-
cally, we also assessed the possibility of decoding summary ensemble
representations by training a classifier on data from Ensembles 1–1 and
1–2 versus 2–1 and 2–2 and testing it on data corresponding to their
single average faces from single-face blocks. As a control, we also trained
a classifier on data for single faces from different ensemble groups (i.e.,
1–1 and 1–2 vs 2–1 and 2–2) and tested it on data from the corresponding
ensemble groups.

Last, all comparisons to chance, as described above, were also con-
ducted against permutation-based estimates (rather than a preset 50%
chance level). To this end, for each participant and type of classification,
we computed chance estimates by randomly shuffling classification
training labels 1000 times and by deriving and averaging a corresponding
number of classification estimates. Then, we assessed significance by
comparing true classification results against participant-matched
chance-level estimates (two-tailed paired t test across participants).

Pattern classification: spatiotemporal dynamics. To estimate the time
course of single and ensemble face processing the analyses above were
conducted again across multiple temporal windows. Specifically, classi-
fication was conducted across �10 ms windows (i.e., 5 time bins �
�1.95 ms � �9.75 ms) relying on 60 feature patterns (5 consecutive time
bins � 12 electrodes). The analysis was performed between �100 and
700 ms, corresponding to 410 time bins, by sliding the window one bin at
a time. Thus, for each type of classification, this analysis provides a fine-
grained temporal estimate of discrimination.

Further, to evaluate the cross-temporal generalizability of relevant in-
formation for any given type of classification, training was performed for
every window, and then testing was conducted for every possible window
(Isik et al., 2014). Temporal cross-decoding yielded a 406 � 406 matrix
whose diagonal corresponds to the time course estimated above (i.e.,
when training and testing is performed over the same temporal window).
This analysis is instrumental in assessing the redundancy/complementa-
rity of information contained within the EEG signal across different
intervals.

For both types of analysis, classification accuracy across participants
was compared with chance (50%) via one-sample t tests FDR-corrected
for multiple comparisons.
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Face space and face ensembles. Face space
constructs were derived separately for each
participant by applying multidimensional scal-
ing (MDS) to EEG-based estimates of face sim-
ilarity. Specifically, classification accuracies
based on a large temporal window (i.e., 50 –
650 ms) yielded a 30 � 30 confusability matrix
encoding the relationship between every pair
of single faces and face ensembles (i.e., 24 indi-
vidual identities, two average faces, and four
ensembles). Next, all values were linearly
scaled between 0 and 1, and metric MDS was
applied to approximate the corresponding face
space. The dimensionality of the space was re-
stricted to 15 dimensions as this was sufficient
to account for most variance in our data
(�82% for each participant) while also mini-
mizing the possibility of overfitting for classifi-
cation analyses performed in this space.

In addition, for completeness, face space was
also estimated based on image properties to vi-
sualize the objective structure of the stimulus
space. Specifically, the pixelwise Euclidean dis-
tance between pairs of single-face stimuli (i.e.,
24 individual identities and two average faces)
was computed in CIEL*a*b*. Then, MDS was
applied to the resulting confusability matrix to
derive a stimulus-based face space. To be clear,
this analysis does not include face ensembles as
their similarity to single faces cannot be directly measured (i.e., they
involve different types of visual display).

Next, a linear discriminant analysis classifier was trained on EEG-
based face space coordinates to classify single faces across the two ensem-
ble groups (i.e., 12 faces associated with Ensembles 1–1 and 1–2 vs 12
faces from ensembles 2–1 and 2–2) and was tested on the four face en-
sembles. The results of this analysis are presented in Figure 6 in a 3D
space for visualization purposes.

Image reconstruction of single-face and ensemble summary percepts. The
procedure for facial image reconstruction relies on a recent approach
capitalizing on the spatiotemporal structure of EEG data (Nemrodov et
al., 2018, 2019). Here, we use this technique to assess and visualize rep-
resentations of individual faces as well as, notably, representations asso-
ciated with ensemble perception.

Briefly, the procedure for single-face reconstruction involves a series
of steps, as follows. First, visual features accounting for the structure of
face space were derived separately for each dimension of the space. These
features were computed as weighted sums of image stimuli following a
strategy akin to reverse correlation (Gosselin and Schyns, 2003; Murray,
2011; Smith et al., 2012). Following conversion to CIEL*a*b, face stimuli
were summed proportionately to their coordinates separately for every
dimension of face space. The procedure yielded a total of 15 features or
classification images (CIMs), one for each corresponding dimension.

Second, for each dimension, permutation-based CIMs were generated
by randomly shuffling the coefficients associated with the stimulus im-
ages. Pixel intensities in the true CIM were then compared with the
corresponding intensities of pixels in the permutation-based CIMs, and
only CIMs that contained pixel values significantly different from chance
were retained for reconstruction purposes.

Third, the coordinates of the target face were estimated into the exist-
ing face space. Importantly, to avoid dependency, the target face was left
out from face space construction and feature derivation by using a leave-
one-out approach.

Last, a linear combination of significant CIMs, proportional with the
coordinates of the target in face space, was added to an average face
obtained from all other faces. The outcome of this procedure yields a
visual approximation of the appearance of the target for a specific
participant.

Ensemble summary reconstruction relied on the procedure above
with two modifications. First, all individual faces were included in the

approximation of face space, as there was no need to systematically leave
one single face out. Second, following the same reasoning, CIMs were
added to the average of all single-face stimuli.

Evaluation of image reconstructions. For single faces, reconstruction
accuracies were estimated as the relative number of instances for which
the reconstructed image in CIEL*a*b was more similar to its target than
to any other stimulus. Reconstruction accuracy averaged across partici-
pants was then compared with chance (50%) via two-tailed one-sample
t tests.

For face ensembles, reconstruction accuracy was estimated in the same
manner, except that reconstructions were compared with average faces
instead of individual faces. For instance, reconstructions for Ensembles
1–1 and 1–2 were labeled as accurate if they were closer to average iden-
tity 1 than to average identity 2.

Results
Experiment 1: behavioral experiment
Behavioral testing was conducted to confirm and to assess explicit
sensitivity to summary face representations. To this end, 24 dis-
tinct face images were selected, processed, and divided into four
ensembles of 6 faces such that two ensembles (i.e., 1–1 and 1–2)
shared the same pixelwise average face and the other two ensem-
bles (i.e., 2–1 and 2–2) shared a different average (Fig. 1). In
response to such stimuli, participants were instructed to main-
tain central fixation and to perform a one-back identity task by
indicating whether two ensembles, sequentially presented, shared
the same average identity or not. In addition, participants per-
formed a one-back image task with pairs of centrally presented
single-face stimuli.

An evaluation of accuracy showed that, in the single-face task,
participants reached, as expected, ceiling performance (mean
score � 96.51%, range: 92%–100%, SD � 2.67%; two-tailed one-
sample t test against 50% chance: t(13) � 65.18, p � 0.0001, Co-
hen’s d � 17.42). In the ensemble task, despite the considerable
level of difficulty reported by participants, performance (mean
score � 60.79%, range: 54%– 67.7%, SD � 1.06%) remained
above chance (two-tailed one-sample t test; t(13) � 10.16, p �
0.0001, d � 2.71) but was not as accurate as performance in the

Figure 1. Experimental stimuli. A total of 24 unique faces were selected, processed, and divided into four different ensembles
such that two ensembles (1–1 and 1–2) shared one average face (average 1) and the other two ensembles (2–1 and 2–2) shared
a different average face (average 2).

7740 • J. Neurosci., September 25, 2019 • 39(39):7737–7747 Roberts et al. • Neural Representation of Face Ensembles



single-face task (two-tailed paired t test; t(13) � �40.94, p �
0.0001, d � 10.55). However, the comparison of the two tasks
showed that accuracy was correlated across participants (Pearson
correlation; r � 0.577, p � 0.03).

Consistent with the results above, an examination of reaction
times (RT) found that, relative to the single-face task (mean RT �
409 ms; range: 291– 614 ms), the ensemble task (mean RT � 827
ms, range: 550 –1298 ms) yielded significantly longer RTs (two-
tailed Wilcoxon signed-rank test; z � 3.30, p � 0.01, r � 0.88).
No significant correlation was found for RTs between the two
tasks across participants (r � 0.60, p � 0.84).

In agreement with previous work, the current results indicate
that participants are capable of extracting a summary represen-
tation of facial identity from ensemble stimuli. However, in con-
trast to prior work, participants did not directly match an
ensemble to a summary representation but, rather, to a different
ensemble consisting of a different group of faces. Hence, we pro-
vide a novel demonstration of summary identity encoding, and
we show that summary representations are robust enough to be
reliably compared, even across different ensembles.

Experiment 2: EEG experiment
To assess visual representations of summary identity and their
temporal dynamics, EEG data were collected with the same group
of participants. Specifically, EEG data were recorded while par-
ticipants viewed sequences of single faces and face ensembles
presented for 300 ms each. Participants were instructed to main-
tain central fixation and to perform a go/no-go task by pressing a
key whenever they saw a single female face in single-face blocks,
or an ensemble of female faces in ensemble blocks.

Univariate analyses
Multiple ERP components (P1, N170, P2, and N250), typically
related to face processing, were identified across 12 bilateral OT
electrodes (left: P5, P7, P9, PO3, PO7, and O1; right P6, P8, P10,
PO4, PO8, and O2); these electrodes were selected based on their
known relevance for face processing (e.g., robust N170 compo-
nents) (Itier and Taylor, 2002; Caharel et al., 2009; Ince et al.,
2016) and ability to support face decoding (Nemrodov et al.,
2016). These components were compared across single faces and
face ensembles to assess coarse differences in the ERP signal and
to relate the current results with prior ERP investigations (Puce et
al., 2013). Specifically, differences in amplitude and latency were
evaluated across single faces and ensembles for each component
(two-tailed paired t tests). These analyses revealed lower P1 am-
plitude (t(13) � �2.40, p � 0.032, d � 0.218), earlier N170
(t(13) � �5.63, p � 0.0001, d � 0.400), and earlier P2 (t(13) �
�3.00, p � 0.011, d � 0.283) components for face ensembles
relative to single faces (Fig. 2). No other comparisons reached
significance (all p values � 0.10).

To relate behavioral findings with the present results, perfor-
mance accuracy in the ensemble task was correlated across par-
ticipants with P1 amplitude as well as with the onset of N170 and
P2. However, no correlations reached significance (P1: r �
�0.47, p � 0.87; N170: r � 0.43, p � 0.13; and P2: r � �0.34, p �
0.23).

Single-face decoding
Pairwise face classification was conducted across spatiotemporal
patterns (i.e., 12 OT electrodes, 50 – 650 ms after stimulus onset)
to estimate the overall discriminability of different stimuli and of
their underlying representations. First, this analysis was con-
ducted across each pair of individual faces (i.e., 276 pairs corre-

sponding to 26 faces). The analysis yielded above-chance
classification (mean accuracy � 63.50%, SD � 5.84%; one-
sample t test against 50% chance; t(13) � 8.64, p � 0.0001, d �
2.31), consistent with the ability of the EEG signal to capture
identity-related facial information (Nemrodov et al., 2016).

Second, we considered the impact of our stimulus design pro-
cedure, which likely amplified visual differences between faces
purposed for the construction of different ensemble groups (i.e.,
the visual similarity of faces from Ensembles 1–1 and 1–2 com-
pared with faces from 2–1 and 2–2) (Fig. 1). Hence, it is possible
that successful face decoding was driven exclusively by pairs of
faces from different groups. To evaluate this possibility, single-
face classification was evaluated for all possible face pairs within
each group (i.e., 132 pairs) and separately for all possible face
pairs across groups (i.e., 144 pairs). As expected, classification
accuracy was higher for the latter compared with the former
(two-tailed paired t test; t(13) � 6.92, p � 0.0001, d � 1.03).
However, classification accuracy was significantly above chance
both across groups (mean accuracy: 63.50%, SD � 5.85%, one-
sample t test against chance; t(13) � 8.64, p � 0.0001, d � 2.31)
and within groups (54.30%, SD � 4.15, t(13) � 3.87, p � 0.0019,
d � 1.03) (Fig. 3A). Thus, successful decoding was not driven
exclusively by pairs of faces from different groups. Importantly,
within-group faces can be discriminated from each other, and
this should not prevent, in itself, the discrimination of same-
group ensembles (e.g., Ensembles 1–1 and 1–2).

Last, we note that comparisons of decoding accuracy against
permutation-based chance levels replicated qualitatively all clas-
sification results reported above.

Ensemble decoding
Ensemble classification was assessed across all 6 possible ensem-
ble pairs. Classification accuracy was above chance (mean classi-
fication � 58.07%, SD � 4.17; one-sample t test; t(13) � 7.23, p �
0.0001, d � 1.93), indicating overall sensitivity to visual ensemble
information.

However, while within-group single faces are discriminable,
as seen above, it is possible that same-group ensembles are not.
Specifically, if face ensembles are summarized into a single iden-
tity representation, as suggested by prior behavioral work (de

Figure 2. ERP waveforms for single faces and face ensembles. A comparison of ERPs elicited
in response to single faces and face ensembles across 12 bilateral occipitotemporal electrodes
revealed a reduced amplitude for the P1 component, an earlier N170 component, and an earlier
P2 component for face ensembles relative to single faces *p � 0.05. ***p � 0.001.
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Fockert and Wolfenstein, 2009; Neumann et al., 2013, 2017; Hab-
erman et al., 2015), same-group ensembles (e.g., Ensembles 1–1
and 1–2) may not be discriminable from each other if, though
consisting of different individual faces, they are perceptually re-
duced to the same average identity. To evaluate this possibility,
ensemble classification was evaluated separately for same-group
ensembles (i.e., 2 pairs) and cross-group ensembles (i.e., 4 pairs)
(Fig. 3A). Interestingly, same-group ensemble classification was
only marginally significant (mean accuracy � 55.02%; two-tailed
one-sample t test against 50%, t(13) � 1.85, p � 0.060, d � 0.50),
in contrast to cross-group ensembles (mean accuracy � 81.53%;
t(13) � 12.50, p � 0.0001, d � 3.34); these results were also con-
firmed by comparisons against permutation-based chance,
which yielded qualitatively similar results (i.e., significantly
above-chance decoding for cross-group ensembles but not for
same-group ensembles).

Further, to relate single and ensemble face decoding, we com-
pared their levels of decoding accuracy. A two-way repeated-
measures ANOVA (2 stimulus types: single face vs ensemble, and
2 classification groups: within and across group) revealed signif-
icant main effects of stimulus type (F � 65.60, p � 0.0001, � 2 �
0.84), with higher accuracy for ensembles relative to single faces,
and classification group (F � 125.69, p � 0.0001, � 2 � 0.91),

with higher accuracy for cross-group versus within-group decod-
ing, as well as a significant interaction between the two factors
(F � 383.05, p � 0.0001, � 2 � 0.97). A further comparison of
cross-group decoding accuracy with the two types of stimuli re-
vealed no significant correlation across participants (r � 0.17,
p � 0.56).

In addition, we computed correlations between behavioral
accuracy in the ensemble task with both overall ensemble decod-
ing accuracy and cross-group ensemble decoding accuracy. How-
ever, neither correlation reached significance (r � 0.020, p � 0.95
and r � �0.25, p � 0.39, respectively).

Summary representation decoding: cross-stimulus
classification of face ensembles
As a more robust test of ensemble representations, we assessed
the ability to decode the same summary representation from dif-
ferent ensembles. To this end, we trained the classifier on every
possible combination of two ensembles with distinct average
identities (e.g., training on Ensembles 1–1 and 2–1), and tested it
on the remaining two ensembles, which matched the former with
respect to corresponding average identities (e.g., testing on En-
sembles 1–2 and 2–2). This analysis yielded 81.53% mean accu-
racy (SD � 9.44%; one-sample t test against chance, t(13) � 12.50,
p � 0.0001, d � 3.34). These results are convergent with the
outcome of ensemble decoding relying on the same ensembles for
training and testing purposes, as described above (Fig. 3A), and
provide, by means of cross-stimulus classification, a more strin-
gent test of sensitivity to summary representations.

Further, we investigated whether the patterns corresponding
to a single average face could be correctly classified based on the
patterns from its corresponding ensembles. To this end, we

Figure 3. EEG-based decoding results. A, Classification accuracies for single faces and face
ensembles were estimated and compared both within group (i.e., same average identity) and
across groups (i.e., different average identities). Ensemble decoding yielded higher classifica-
tion accuracy than single-face decoding, and cross-group decoding yielded higher accuracy
than within-group decoding. B, Cross-decoding accuracies were estimated by (left) training a
classifier on pairs of single faces from different groups (i.e., 1–1 and 1–2 vs 2–1 and 2–2) and
testing on ensembles from the corresponding groups as well as by (right) training on ensembles
from different groups and then testing on average faces. Only the latter analysis yielded signif-
icant decoding accuracy. Error bars indicate � 1 SE across participants. ***p � 0.001.

Figure 4. The time course of EEG-based classification accuracy. Classification was computed
across consecutive 10 ms windows �12 occipitotemporal electrodes and averaged across all
participants. Both single faces (top) and ensembles (bottom) exhibited extended intervals of
above-chance accuracy. The time course of single-face classification achieved above-chance
accuracy at 138 ms, peaked at 310 ms, and maintained significance until 605 ms ( p � 0.05; FDR
correction across time, q � 0.05). The time course of face-ensemble classification achieved
above-chance classification accuracy at 101 ms, exhibited several shorter windows of signifi-
cance across the time course ( p � 0.05; FDR correction across time, q � 0.05), and peaked at
408 ms. Shaded areas represent � 1 SE across participants. Circles represent overall peaks of
classification accuracy for single faces and face ensembles.
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trained a pattern classifier on signals corresponding to the two
ensemble groups (i.e., Ensembles 1–1 and 1–2 vs 2–1 and 2–2)
and tested it on the signals from their corresponding single aver-
age identities (i.e., average face 1 vs average face 2) (Fig. 1). Clas-
sification accuracy was above chance (55.35%; SD � 4.66%,
t(13) � 4.31, p � 0.0001, d � 1.15) (Fig. 3B).

While the results above support the neural encoding of sum-
mary representations, an alternative account relies on the encod-
ing of individual faces. Specifically, it is possible that individual
faces from different ensemble groups have sufficient within-
group similarity and between-group dissimilarity that the encod-
ing of any two individual faces from different groups may suffice
for the purpose of decoding the corresponding ensembles. To
assess this possibility, we attempted to classify face ensembles by
training a classifier on the data from any two single identities
belonging to different ensemble groups, and then tested the clas-
sifier on the two ensemble groups. This analysis yielded chance-
level performance (mean classification accuracy � 50.97%, SD �
2.20%; one-sample t test, t(13) � 1.66, p � 0.12, d � 0.44).

Again, to verify the validity of our results above, we compared
cross-decoding accuracy against permutation-based chance lev-

els. These additional analyses replicated qualitatively all classifi-
cation results reported above.

Thus, the use of cross-stimulus classification provides evi-
dence for the neural encoding of summary face representations.
Of note, these results cannot be explained away by the encoding
of unique pairs of single-face constituents within such ensembles.

Temporal dynamics of single and ensemble face processing
To elucidate the time course of face processing, classification was
performed across 10 ms windows separately for single faces and
face ensembles. For single faces, classification first reached signif-
icance at 138 ms, peaked at 310 ms, and exhibited an extended
interval of above-chance performance (one sample t tests against
chance, FDR-corrected across time bins, q � 0.05; p � 0.031)
(Fig. 4). In contrast, for face ensembles, classification reached
significance earlier, at 101 ms, it peaked later, at 408 ms, and it
exhibited multiple shorter intervals of above-chance accuracy,
with the longest between 360 and 460 ms (q � 0.05; p � 0.01)
(Fig. 4). Also, we note that face ensembles exhibited a more grad-
ual increase in accuracy over time compared with single faces

Figure 5. Cross-temporal generalizability of single-face and ensemble processing. Cross-temporal decoding for (A) single faces and (B) face ensembles were estimated by training on 10 ms
intervals (x axis) and testing on any 10 ms interval (y axis). C, D, Time points that are significantly above chance (marked with red) for single faces and face ensembles, respectively (comparison to
50%, FDR correction, q � 0.05). Limited generalizability is found by above-chance decoding in the proximity of training intervals between (C) 150 – 600 ms for single faces and (D) 225–550 ms for
ensembles.
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consistent with a process of information
accumulation (Haberman et al., 2015).

To examine whether complementary in-
formation exists at different time points, we
compared decoding participant-specific es-
timates at the time of group-based peaks
(i.e., at 310 ms for single faces and 408 ms
for ensembles) with the corresponding re-
sults from temporally cumulative analyses
(i.e., across 50 – 650 ms). This comparison
revealed that cumulative decoding sur-
passes its temporal counterpart. Con-
cretely, cumulative analysis provided an
advantage both for single faces (two-tailed
t test across participants, t(13) � 6.47, p �
0.001, d � 1.89) and for ensembles (t(13)

� 4.45, p � 0.001, d � 1.91) consistent
with the hypothesis of complementary in-
formation becoming available over time.

As a further test of this hypothesis, we
examined cross-temporal generalizabil-
ity, by conducting pattern classification
for every possible combination of tempo-
ral windows for training and testing pur-
poses. Figure 5 summarizes these results
separately for single faces and face ensem-
bles. Upon inspection, it appears that
some degree of generalization is present,
especially between 150 and 350 ms for sin-
gle faces (Fig. 5A), and between 350
and 450 ms for face ensembles (Fig. 5B).
However, after correcting for multiple
comparisons (q � 0.05), generalizability
appears rather limited around the diago-
nal both for single faces (Fig. 5C) and for
ensembles (Fig. 5D).

Together, these results demonstrate
that single faces and face ensembles ex-
hibit different temporal dynamics, but
their processing is similar in that largely
complementary information across time
appears to support successful classification for either class of
stimuli.

Face space: single faces and face ensembles
Face space provides an informative way of evaluating and visual-
izing the structure of face representations by capturing the pair-
wise similarity of different facial identities (Valentine, 1991).
Specifically, the relative distance between different points, corre-
sponding to different faces, matches their degree of behavioral-
based similarity, neural-based similarity, or image similarity
(O’Toole et al., 2018). Here, we appeal to this framework to eval-
uate the relationship between neural-based ensemble summary
representations and single-face representations.

To this end, for each participant, we constructed a confusabil-
ity matrix containing EEG-based pairwise similarity estimates
across individual faces and ensembles (i.e., 24 individual iden-
tities, two average faces, and four ensembles). Then, we esti-
mated a face space construct by applying metric MDS across
such matrices.

For visualization purposes, Figure 6A displays the results of
such an analysis based on pixelwise image differences across stim-
uli, whereas Figure 6B displays the outcome of the EEG-based

analysis averaged across participants. As expected, both instances
show single-face clustering based on ensemble group. In addi-
tion, consistent with our decoding results, an examination of
neural-based face space reveals that ensembles from the same
groups are closer to each other than ensembles from different
groups. More importantly, ensemble representations are
closer to single-face representations belonging to their corre-
sponding group. That is, representations associated with En-
sembles 1–1 and 1–2 are closer to representations of single
faces from those ensembles compared with single faces from
the ensembles belonging to the other group, and likewise for
Ensembles 2–1 and 2–2.

To evaluate more thoroughly the observation above, neural-
based face spaces were approximated separately for each partici-
pant. Then, a linear discriminant analysis classifier was trained on
face space coordinates to classify single faces across the two en-
semble groups (i.e., 12 faces associated with Ensembles 1–1 and
1–2 vs 12 faces from Ensembles 2–1 and 2–2) and was tested on
the four ensembles. This analysis found above-chance classifica-
tion for each participant (average classification accuracy �
68.08%; SD � 6.62%; one-sample t test against chance; t(13) �
10.22, p � 0.0001, d � 2.73). For illustration purposes, an exam-

Figure 6. Face space. An approximation of face space was derived from (A) image-based pixelwise distances across face images
and (B) EEG-based dissimilarity estimates associated with face perception averaged across participants (only 3 dimensions are
shown for visualization purposes). Both spaces contain single faces, including average faces, whereas neural-based face space also
includes representations of the four ensembles. In both spaces, single faces are segregated consistent with their membership to
different groups (i.e., Ensembles 1–1 and 1–2 vs Ensembles 2–1 and 2–2). A classifier trained on single-face representations from
different groups correctly discriminates between ensemble representations by placing them on the corresponding side of the
classification hyperplane (purple shading).
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ple of the linear discriminant analysis-based hyperplane is shown
in Figure 6B for neural confusability data averaged across all par-
ticipants. In this case, the hyperplane that divides face space
between the two groups of single faces classifies ensemble repre-
sentations with perfect accuracy.

Image reconstruction of single-face and ensemble
summary percepts
Recent advances in EEG-based image reconstruction have pro-
vided the opportunity to assess and visualize representations of
individual faces (Nemrodov et al., 2018, 2019). Here, we apply
this methodology to approximate the visual content of summary
representations in addition to that of single-face representations.
Specifically, we derive visual features from the structure of face
space and then combine these features to reconstruct the appear-
ance of face representations.

This approach yielded, for each participant, reconstructions
of percepts associated with single faces (Fig. 7A) and with ensem-
ble summary representations (Fig. 7B; for additional examples,
see Fig. 7-1, available at https://doi.org/10.1523/JNEUROSCI.
0471-19.2019.f7-1). An image-based evaluation of individual
face reconstructions relative to single-face stimuli yielded above-
chance accuracy (mean accuracy � 62.93%; one-sample t test
against 50% chance, t(13) � 11.97, p � 0.0001, d � 3.20). More
importantly, the accuracy of ensemble summary percept recon-
structions, evaluated relative to average faces, was also above chance
(mean accuracy � 74.40%; t(13) � 3.93, p � 0.00086, d � 1.00).

The current analysis indicates that single-face representations
reflect, as expected, the visual properties of their corresponding
stimuli. More importantly, it shows that ensemble representa-
tions capture the summary visual properties of the face ensem-
bles. Thus, the present findings confirm the summary nature of

neural ensemble representations and pro-
vide a novel means to visualize their
content.

Discussion
The current study investigates the neural
basis of face ensemble processing with
focus on summary representations and
temporaldynamics.Ourinvestigationevinced
several notable outcomes, as follows.

First, we find that, behaviorally, partici-
pants are able to explicitly match summary
representations across different ensembles.
These results are consistent with previous
work (de Fockert and Wolfenstein, 2009;
Neumann et al., 2013, 2017; Haberman et
al., 2015), which has demonstrated sensi-
tivity to summary visual properties of face
ensembles by the successful matching of
ensembles to average face stimuli. How-
ever, it is possible that the sensitivity dem-
onstrated in such studies is facilitated, or
even developed, due to the availability of
average faces, in their role of matching
stimuli, throughout experimental testing.
Here, we address this concern, and we
provide a more stringent test of such sen-
sitivity by showing that summary repre-
sentations are robust enough to support
direct ensemble comparison.

Second, we show that EEG patterns
can be used to decode not only single faces

(Nemrodov et al., 2018, 2019), but also face ensembles. Interest-
ingly, decoding was successful across ensembles with different
average identities, but not across ensembles with the same aver-
age face and different face constituents. This finding is consistent
with the hypothesis that ensembles are largely reduced to sum-
mary representations (Haberman et al., 2015). Specifically, while
information about individual constituents may not be entirely
discarded (Neumann et al., 2017), summary percepts provide a
convenient way of representing a wealth of information, espe-
cially when such information is only briefly available (e.g., 300 ms
in our experiment). Thus, the neural signatures of individual
constituent faces may be missing or considerably diminished
and, hence, unable to support the decoding of distinct ensembles
with the same summary representation.

Third, cross-decoding across ensembles and average face
stimuli provides further evidence for summary representations.
Specifically, we find that a classifier trained on ensembles with
different average identities can successfully decode the corre-
sponding average faces from each ensemble. This result is signif-
icant in that ensemble faces and single faces are presented at
different positions in the visual field (i.e., parafoveally vs cen-
trally). As eccentricity is a well-known principle of cortical orga-
nization, the two types of stimuli are likely to recruit initially
different areas of early and high-level visual cortex (Hasson et al.,
2002). Successful cross-decoding indicates that position-inva-
riant neural representations of face summaries can be extracted
from ensemble displays and rendered comparable to representa-
tions of single faces. Thus, decoding appears to exploit, at least to
some extent, visual properties of higher-level position-invariant
face representations available at later stages within the visual pro-
cessing hierarchy.

Figure 7. Neural-based image reconstruction. Examples of reconstructions and corresponding stimuli from a representative
participant for (A) single faces and (B) ensemble summary representations. Reconstructions were based on EEG signals corre-
sponding to ensemble perception but evaluated relative to ensemble average images. Numbers in the top left corner of each
reconstructed image indicate image-based reconstruction accuracy. C, Average reconstruction accuracies across participants. Error
bars indicate � 1 SE. ***p � 0.001. Additional examples of reconstructions can be found in Figure 7-1 (available at https://
doi.org/10.1523/JNEUROSCI.0471-19.2019.f7-1).

Roberts et al. • Neural Representation of Face Ensembles J. Neurosci., September 25, 2019 • 39(39):7737–7747 • 7745

https://doi.org/10.1523/JNEUROSCI.0471-19.2019.f7-1
https://doi.org/10.1523/JNEUROSCI.0471-19.2019.f7-1
https://doi.org/10.1523/JNEUROSCI.0471-19.2019.f7-1
https://doi.org/10.1523/JNEUROSCI.0471-19.2019.f7-1


Fourth, while face space (Valentine, 1991; O’Toole et al.,
2018) provides a classical framework in the study of face percep-
tion, its use in the research of face ensembles has not been ex-
plored yet. Here, we embed summary ensemble representations
into face space constructs both for visualization purposes and as
an intermediary step in the image reconstruction procedure. An
examination of face space topography is consistent with our de-
coding results by pointing to the separability of ensemble repre-
sentations in this space. Specifically, we find that ensemble
representations are positioned alongside the representations
of individual faces belonging to such ensembles. Further, en-
sembles sharing the same average are relatively close in face
space convergent with the difficulty of their decoding.

Fifth, we visualize and assess mental constructs associated
with summary representations by reconstructing their visual ap-
pearance from neural data elicited by ensemble perception. Of
note, this marks a clear departure from previous uses of image
reconstruction aimed at retrieving the appearance of specific
stimuli, whether alphanumeric characters (Thirion et al., 2006;
Miyawaki et al., 2008), scenes (Naselaris et al., 2009; Nishimoto et
al., 2011), or faces (Lee and Kuhl, 2016; Chang and Tsao, 2017;
Zhan et al., 2019). In contrast, here we retrieve the visual content
of internal representations derived from the structure of ensem-
ble displays as opposed to that of the ensembles themselves. Our
results confirm that summary representations reliably capture
aspects of ensemble averages. Thus, our work provides insights
into the fine-grained pictorial content of summary representa-
tions; and further, it paves the way for future work to explore
exactly what and how different visual cues (e.g., shape and surface
properties) are integrated into such representations.

Next, with regard to temporal dynamics, our univariate anal-
yses confirmed the sensitivity of traditional ERP components,
such as N170 (Puce et al., 2013) as well as P1 and P2, to ensemble
processing. However, we note that pattern analyses of neural data
afford a more thorough and robust assessment of temporal pro-
files (Isik et al., 2014; Cichy et al., 2014). Accordingly, our decod-
ing results point to widely different neural profiles for single faces
versus face ensembles. Specifically, for single faces, we note a first
peak of decoding accuracy at 163 ms, in the proximity of the
N170 component, and an overall peak at 310 ms. In contrast,
ensemble processing exhibits a more gradual increase in the de-
coding accuracy with a peak occurring at 408 ms after stimulus
onset. Limited temporal generalization also suggests largely dif-
ferent information supporting decoding at different time points,
although a cloud of above-chance accuracy centered �400 ms
along with smaller subsequent patches of significant decoding
were also noted (Fig. 5). Interestingly, the extensive time course
of ensemble processing revealed here is broadly consistent with
the temporal integration of information during ensemble face
perception found by previous behavioral work, including the es-
timation of a time constant of �800 ms underlying visual inte-
gration (Haberman et al., 2009). Thus, pattern analysis of EEG
data has the ability to shed light on the dynamics of spatial en-
semble processing and paves the way to analogous investigations
into serial dependence in face perception (Fischer and Whitney,
2014; Liberman et al., 2014).

Importantly, the temporal profile described above is not at
odds with prior research documenting the ability to rapidly ex-
tract summary representations from an ensemble, often in �100
ms (Haberman and Whitney, 2009; Li et al., 2016). Indeed, we
also note a first peak in ensemble decoding at �100 ms (Fig. 4,
bottom). Rather, our findings suggest a gradual process of deriv-
ing face ensemble representations that are not fully developed

until �400 ms. Of note, this interpretation also converges with
the derivation of a higher-level summary representation of en-
semble identity at later stages of visual processing, as discussed
above.

Related to the speed of accessing summary representations, a
number of studies have proposed that such representations are
developed automatically, without the explicit deployment of at-
tention (Alvarez and Oliva, 2009; de Fockert and Wolfenstein,
2009). However, this conclusion has been debated as ensemble
processing, at least in the context of letter stimuli, appears to
require attention (Cohen et al., 2016; Jackson-Nielsen et al.,
2017). As participants were not provided with any explicit in-
structions regarding ensemble summary identity in the EEG ex-
periment, our findings support the idea that facial summary
representations can be developed implicitly and automatically.

Interestingly, participants were also able to process summary
representations in the behavioral experiment when provided
with explicit instructions to match same-average ensembles.
However, participants reported considerable difficulty with the
task while behavioral accuracy was lower than that achieved by
EEG-based decoding and, also, uncorrelated with it across par-
ticipants. One explanation in this respect relies on the hypothesis
that attention markedly changes how ensembles are processed
(Chong and Treisman, 2005; Cant and Xu, 2015). Specifically, the
deployment of attention may have an adverse impact on the effi-
ciency and the robustness of ensemble processing. Future studies
will need to evaluate this possibility in detail.

In conclusion, we provide behavioral and neural evidence for
ensemble summary representations, we characterize their fine-
grained visual content, and we take steps toward elucidating the
temporal profile of their processing. Thus, the present findings
serve to further our understanding of ensemble processing with
regard to its representational basis, its underlying mechanisms,
and its temporal dynamics.
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